pwm控制器选什么逆变器,如何用pwm信号直接控制逆变器
来源:整理 编辑:太阳能 2023-05-05 00:18:04
本文目录一览
1,如何用pwm信号直接控制逆变器
太阳能控制器一般的充电方式是选用脉宽充电的,而逆变器是直接接蓄电池太阳能控制器 般 充电 式 选用脉宽充电 逆变器 直接接蓄电池*****论坛车爸爸的分享,对你这个问题挺有用,建议看看.---->
2,求助控制器和逆变器选择
无论是控制器还是逆变器,在选择的时候,一定要选择牌子的。这样还是有点保证的。当然内部的配置,产品的参数,是否满足个人的需求也很重要。比如,要根据自己的需求,来定位一个需要什么样配置的逆变器。逆变器是把直流电变成交流电的装置。控制器是让电气设备实现各种功能的装置(如正、反转等等)。它们有根本的区别。有直流电和交流设备就需要加逆变器。让电动机按照某种方式运行就需要加控制器。
3,逆变器的选线
逆变器 初级线圈绕外,次级线圈绕内。变压器 初级线圈绕内,次级线圈绕外。共同点就是粗线绕外,细线绕内,你的这个问法说明你做的是简易式逆变器,输出的电源参数标准不高,一般来讲在输出线圈匝数不确定情况下你可以多绕几圈,中间多留几个抽头,做好后用万用表测量你的输出电压,哪个适合你就用那一个,这样做出来的电源输出电压的频率一般偏高,如果你用来带动电视机,电脑,电热水器等等用电器的时候没问题,但是带动电风扇的时候就出问题了,电风扇只是嗡嗡的响就是不转,你要有心理准备,现在逆变器也不贵,如果你做的目的是使用那么你就买一个,如果你是一个无线电爱好者,那你就可以动手做了,这事是我的个人建议。逆变器的选线原则:1. 初级线圈绕外,次级线圈绕内。2. 变压器初级线圈绕内,次级线圈绕外。3. 共同点就是粗线绕外,细线绕内, 逆变器是把直流电能(电池、蓄电瓶)转变成交流电(一般为220V,50Hz正弦波)。它由逆变桥、控制逻辑和滤波电路组成。广泛适用于空调、家庭影院、电动砂轮、电动工具、缝纫机、DVD、VCD、电脑、电视、洗衣机、抽油烟机、冰箱,录像机、按摩器、风扇、照明等。 逆变器是一种DC to AC的变压器,它其实与转化器是一种电压逆变的过程。转换器是将电网的交流电压转变为稳定的12V直流输出,而逆变器是将Adapter输出的12V直流电压转变为高频的高压交流电;两个部分同样都采用了用得比较多的脉宽调制(PWM)技术。其核心部分都是一个PWM集成控制器,Adapter用的是UC3842,逆变器则采用TL5001芯片。不知道要怎样回答你你要确定要多大的功率及电压用什么驱动做高频还是低频才可以计算线径跟匝数!初极一般0.75-2.0线3-30匝次极0.17-1.0线100-1000匝只能给你这么回答了逆变器 初级线圈绕外,次级线圈绕内。变压器 初级线圈绕内,次级线圈绕外
4,PWM逆变器是什么
参考PWM技术的基本原理随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM法、随机PWM、SPWM法、线电压控制PWM等,而本文介绍的是在镍氢电池智能充电器中采用的脉宽PWM法。它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。PWM技术的具体应用PWM软件法控制充电电流本方法的基本思想就是利用单片机具有的PWM端口,在不改变PWM方波周期的前提下,通过软件的方法调整单片机的PWM控制寄存器来调整PWM的占空比,从而控制充电电流。本方法所要求的单片机必须具有ADC端口和PWM端口这两个必须条件,另外ADC的位数尽量高,单片机的工作速度尽量快。在调整充电电流前,单片机先快速读取充电电流的大小,然后把设定的充电电流与实际读取到的充电电流进行比较,若实际电流偏小则向增加充电电流的方向调整PWM 的占空比;若实际电流偏大则向减小充电电流的方向调整PWM的占空比。在软件PWM的调整过程中要注意ADC的读数偏差和电源工作电压等引入的纹波干扰,合理采用算术平均法等数字滤波技术。软件PWM法具有以下优缺点。优点:简化了PWM的硬件电路,降低了硬件的成本。利用软件PWM不用外部的硬件PWM和电压比较器,只需要功率MOSFET、续流磁芯、储能电容等元器件,大大简化了外围电路。可控制涓流大小。在PWM控制充电的过程中,单片机可实时检测ADC端口上充电电流的大小,并根据充电电流大小与设定的涓流进行比较,以决定PWM占空比的调整方向。电池唤醒充电。单片机利用ADC端口与PWM的寄存器可以任意设定充电电流的大小,所以,对于电池电压比较低的电池,在上电后,可以采取小电流充一段时间的方式进行充电唤醒,并且在小电流的情况下可以近似认为恒流,对电池的冲击破坏也较小。缺点:电流控制精度低。充电电流的大小的感知是通过电流采样电阻来实现的,采样电阻上的压降传到单片机的ADC输入端口,单片机读取本端口的电压就可以知道充电电流的大小。若设定采样电阻为Rsample(单位为Ω),采样电阻的压降为Vsample(单位为mV), 10位ADC的参考电压为5.0V。则ADC的1 LSB对应的电压值为 5000mV/1024≈5mV。一个5mV的数值转换成电流值就是50mA,所以软件PWM电流控制精度最大为50mA。若想增加软件PWM的电流控制精度,可以设法降低ADC的参考电压或采用10位以上ADC的单片机。PWM采用软启动的方式。在进行大电流快速充电的过程中,充电从停止到重新启动的过程中,由于磁芯上的反电动势的存在,所以在重新充电时必须降低PWM的有效占空比,以克服由于软件调整PWM的速度比较慢而带来的无法控制充电电流的问题。充电效率不是很高。在快速充电时,因为采用了充电软启动,再加上单片机的PWM调整速度比较慢,所以实际上停止充电或小电流慢速上升充电的时间是比较大的。为了克服2和3缺点带来的充电效率低的问题,我们可以采用充电时间比较长,而停止充电时间比较短的充电方式,例如充2s停50ms,再加上软启动时的电流慢速启动折合成的停止充电时间,设定为50ms,则实际充电效率为(2000ms-100ms)/2000ms=95%,这样也可以保证充电效率在90%以上。纯硬件PWM法控制充电电流由于单片机的工作频率一般都在4MHz左右,由单片机产生的PWM的工作频率是很低的,再加上单片机用ADC方式读取充电电流需要的时间,因此用软件PWM的方式调整充电电流的频率是比较低的,为了克服以上的缺陷,可以采用外部高速PWM的方法来控制充电电流。现在智能充电器中采用的PWM控制芯片主要有TL494等,本PWM控制芯片的工作频率可以达到300kHz以上,外加阻容元件就可以实现对电池充电过程中的恒流限压作用,单片机只须用一个普通的I/O端口控制TL494使能即可。另外也可以采用电压比较器替代TL494,如LM393和LM358等。采用纯硬件PWM具有以下优缺点。优点:电流精度高。充电电流的控制精度只与电流采样电阻的精度有关,与单片机没有关系。不受软件PWM的调整速度和ADC的精度限制。充电效率高。不存在软件PWM的慢启动问题,所以在相同的恒流充电和相同的充电时间内,充到电池中的能量高。对电池损害小。由于充电时的电流比较稳定,波动幅度很小,所以对电池的冲击很小,另外TL494还具有限压作用,可以很好地保护电池。缺点:硬件的价格比较贵。TL494的使用在带来以上优点的同时,增加了产品的成本,可以采用LM358或LM393的方式进行克服。涓流控制简单,并且是脉动的。电池充电结束后,一般采用涓流充电的方式对电池维护充电,以克服电池的自放电效应带来的容量损耗。单片机的普通I/O控制端口无法实现PWM端口的功能,即使可以用软件模拟的方法实现简单的PWM功能,但由于单片机工作的实时性要求,其软件模拟的PWM频率也比较低,所以最终采用的还是脉冲充电的方式,例如在10%的时间是充电的,在另外90%时间内不进行充电。这样对充满电的电池的冲击较小。单片机 PWM控制端口与硬件PWM融合对于单纯硬件PWM的涓流充电的脉动问题,可以采用具有PWM端口的单片机,再结合外部PWM芯片即可解决涓流的脉动性。在充电过程中可以这样控制充电电流:采用恒流大电流快速充电时,可以把单片机的PWM输出全部为高电平(PWM控制芯片高电平使能)或低电平(PWM控制芯片低电平使能);当进行涓流充电时,可以把单片机的PWM控制端口输出PWM信号,然后通过测试电流采样电阻上的压降来调整PWM的占空比,直到符合要求为止。此电流通过电机内部的寄生电容产生流入地线的漏电流。漏电流过大将对电源产生电磁干扰,还会使电机轴承过早毁坏,从而影响系统运行的可靠性。文中提出了一种新颖的可以有效消除脉冲宽度调制(pwm)逆变器产生的共模电压的有源滤波器。这个有源滤波器由一个单相逆变器和一个五绕组共模变压器组成,可以产生与pwm逆变器输出的电压幅值相等,相位相反的共模电压,通过五绕组共模变压器叠加到逆变器输出中,从而有效消除感应电机端的共模电压。这种有源滤波器结构简单,控制容易。文中通过理论分析,仿真和实验结果证明了这种结构的有效性。 高速电力半导体器件如绝缘栅双极晶体管(igbt)的发展使电压源型脉宽调制逆变器的载波频率大大提高(如20 khz),高开关频率以及零开关损耗方案可显着提高pwm变频器的性能。但在pwm变频器的应用中,出现了一些负面问题。 例如,传统的igbt的控制策略使pwm逆变器输出产生了共模电压。共模电压使igbt在高速开关期间,产生充放电电流。电流通过电机内部的寄生电容产生流入地线的漏电流,漏电流过大将引起电机保护电路的误动作;频率从100 khz到几兆范围变化的漏电流经地线流回系统的三相电源中,产生电磁干扰(emi) ,影响电网上的其他设备的正常运行;轴电压和轴承电流过大使电机轴承过早毁坏 。为抑制逆变器输出的共模电压,提高系统的可靠性,传统的方法是采用转轴接地,轴承绝缘,具有传导性的润滑剂等来降低轴电流,保护电机轴承,但是电机端共模电压仍然存在。电机负载运行时,共模电压仍会通过负载轴承产生具有破坏性的电流。为此开始采用由无源器件组成的滤波器,这类方法对消除过电压的影响非常有效,但载波频率发生变化时,对降低逆变器输出中的谐波成分的作用非常有限。 因此,近年来开始尝试用有源器件来消除这些负面影响。alexander julian等提出了四相逆变器来消除共模电压,这种方法会产生严重的开关损耗和谐波失真。annette jouanne提出双桥逆变器(dbi)用于消除电机共模电压和由此产生的轴承漏电流,这种方法增加了一个三相逆变器及相应的驱动设备,所采用电机的定子必须有两套绕组,从而限制了这种方法的应用范围。PWM一般选用电压控制型逆变器,是通过改变功率晶体管交替导通的时间来改变逆变器输出波形的频率,改变每半周期内晶体管的通断时间比,也就是说通过改变脉冲宽度来改变逆变器输出电压副值的大小. 其整流部分与逆变部分基本是对称的. 唉,几句话说不清楚啦! 总之,最后的输出波形可调,副值可调,甚至功率因数也可调,不过,好象都是用正弦波做为基波的啦.
文章TAG:
pwm控制器选什么逆变器控制 控制器 什么
大家都在看
-
纯电动汽车电池的保养,电动汽车need保养方法
2023-02-09
-
为什么要生产电动汽车,中国鼓励电动汽车发展掌握核心技术
2023-02-20
-
电动汽车专用高压电缆线标准,电动汽车高压电标准电压有多少?
2023-02-24
-
电动汽车充电桩现状,电动车充电桩知多少?问与答(13)
2023-03-07
-
纯电动车专用空调,新能源电动车采用高效可效电力蓄水池驱动
2023-03-10
-
电动车换车标准,北京超标电动自行车以旧换新门店出炉
2023-02-14
-
电动大巴汽车价格表,12米大巴纯车电动有哪些大巴司机?
2023-02-24
-
电动汽车大巴知识,汽车在行驶中突然着火司机应立即切断电源
2023-03-02
-
中国电动轿车品牌排行,十大电动汽车品牌之一:特斯拉比亚迪
2023-02-27
-
加盟纯电动新能源汽车,加盟奇瑞电动汽车代理加盟须知
2023-03-02
-
电动车 电机类型,第一辆汽车电动车1834年制造出来
2023-03-03
-
长江电动车资金来源,电动车骑士过不了武汉长江桥
2023-03-05
-
5kw太能光伏板多少钱,太阳能光伏发电5kw需要多少钱
2023-03-08
-
纯电动汽车电池比较,纯电动汽车优势:零污染和噪音低
2023-03-01
-
比亚迪电动车新款,比亚迪新能源汽车简介回顾比亚di辉煌历程
2023-03-02